50 research outputs found

    Deep Learning Based Automated COVID-19 Classification from Computed Tomography Images

    Full text link
    A method of a Convolutional Neural Networks (CNN) for image classification with image preprocessing and hyperparameters tuning was proposed. The method aims at increasing the predictive performance for COVID-19 diagnosis while more complex model architecture. Firstly, the CNN model includes four similar convolutional layers followed by a flattening and two dense layers. This work proposes a less complex solution based on simply classifying 2D-slices of Computed Tomography scans. Despite the simplicity in architecture, the proposed CNN model showed improved quantitative results exceeding state-of-the-art when predicting slice cases. The results were achieved on the annotated CT slices of the COV-19-CT-DB dataset. Secondly, the original dataset was processed via anatomy-relevant masking of slice, removing none-representative slices from the CT volume, and hyperparameters tuning. For slice processing, a fixed-sized rectangular area was used for cropping an anatomy-relevant region-of-interest in the images, and a threshold based on the number of white pixels in binarized slices was employed to remove none-representative slices from the 3D-CT scans. The CNN model with a learning rate schedule and an exponential decay and slice flipping techniques was deployed on the processed slices. The proposed method was used to make predictions on the 2D slices and for final diagnosis at patient level, majority voting was applied on the slices of each CT scan to take the diagnosis. The macro F1 score of the proposed method well-exceeded the baseline approach and other alternatives on the validation set as well as on a test partition of previously unseen images from COV-19CT-DB dataset

    Automatic annotation of X-ray images: a study on attribute selection

    Get PDF
    Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that need to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval has recently gained high interest in the scientific community. Despite several attempts, the proposed solutions are still far from being sufficiently accurate for real-life implementations. In a previous work, performance of different feature types were investigated in a SVM-based learning framework for classification. of X-Ray images into classes corresponding to body parts and local binary patterns were observed to outperform others. In this paper, we extend that work by exploring the effect of attribute selection on the classification performance. Our experiments show that principal component analysis based attribute selection manifests prediction values that are comparable to the baseline (all-features case) with considerably smaller subsets of original features, inducing lower processing times and reduced storage space

    Covid-19 detection using modified xception transfer learning approach from computed tomography images

    Get PDF
    The significance of efficient and accurate diagnosis amidst the unique challenges posed by the COVID-19 pandemic underscores the urgency for innovative approaches. In response to these challenges, we propose a transfer learning-based approach using a recently annotated Computed Tomography (CT) image database. While many approaches propose an intensive data preprocessing and/or complex model architecture, our method focuses on offering an efficient solution with minimal manual engineering. Specifically, we investigate the suitability of a modified Xception model for COVID-19 detection. The method involves adapting a pre-trained Xception model, incorporating both the architecture and pre-trained weights from ImageNet. The output of the model was designed to make the final diagnosis decisions. The training utilized 128 batch sizes and 224x224 input image dimensions, downsized from standard 512x512. No further da processing was performed on the input data. Evaluation is conducted on the 'COV19-CT-DB' CT image dataset, containing labeled COVID-19 and non-COVID-19 cases. Results reveal the method's superiority in accuracy, precision, recall, and macro F1 score on the validation subset, outperforming the VGG-16 transfer model and thus offering enhanced precision with fewer parameters. Furthermore, compared to alternative methods for the COV19-CT-DB dataset, our approach exceeds the baseline approach and other alternatives on the same dataset. Finally, the adaptability of the modified Xception transfer learning-based model to the unique features of the COV19-CT-DB dataset showcases its potential as a robust tool for enhanced COVID-19 diagnosis from CT images

    Medical image retrieval and automatic annotation: VPA-SABANCI at ImageCLEF 2009

    Get PDF
    Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that needs to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval has recently gained high interest in the scientific community. Despite several attempts, such as the yearly-held ImageCLEF Medical Image Annotation Competition, the proposed solutions are still far from being su±ciently accurate for real-life implementations. In this paper we summarize the technical details of our experiments for the ImageCLEF 2009 medical image annotation task. We use a direct and two hierarchical classification schemes that employ support vector machines and local binary patterns, which are recently developed low-cost texture descriptors. The direct scheme employs a single SVM to automatically annotate X-ray images. The two proposed hierarchi-cal schemes divide the classification task into sub-problems. The first hierarchical scheme exploits ensemble SVMs trained on IRMA sub-codes. The second learns from subgroups of data defined by frequency of classes. Our experiments show that hier-archical annotation of images by training individual SVMs over each IRMA sub-code dominates its rivals in annotation accuracy with increased process time relative to the direct scheme

    Binary and nonbinary description of hypointensity for search and retrieval of brain MR images

    Get PDF
    Diagnosis accuracy in the medical field, is mainly affected by either lack of sufficient understanding of some diseases or the inter/intra-observer variability of the diagnoses. We believe that mining of large medical databases can help improve the current status of disease understanding and decision making. In a previous study based on binary description of hypointensity in the brain, it was shown that brain iron accumulation shape provides additional information to the shape-insensitive features, such as the total brain iron load, that are commonly used in clinics. This paper proposes a novel, nonbinary description of hypointensity in the brain based on principal component analysis. We compare the complementary and redundant information provided by the two descriptions using Kendall's rank correlation coefficient in order to better understand the individual descriptions of iron accumulation in the brain and obtain a more robust and accurate search and retrieval system

    A watershed and active contours based method for dendritic spine segmentation in 2-photon microscopy images (2-Foton mikroskopi görüntülerindeki dendritik dikenlerin bölütlenmesi için watershed ve etkin çevritlere dayalı bir yöntem)

    Get PDF
    Analysing morphological and volumetric properties of dendritic spines from 2-photon microscopy images has been of interest to neuroscientists in recent years. Developing robust and reliable tools for automatic analysis depends on the segmentation quality. In this paper, we propose a new segmentation algorithm for dendritic spine segmentation based on watershed and active contour methods. First, our proposed method coarsely segments the dendritic spine area using the watershed algorithm. Then, these results are further refined using a region-based active contour approach. We compare our results and the results of existing methods in the literature to manual delineations of a domain expert. Experimental results demonstrate that our proposed method produces more accurate results than the existing algorithms proposed for dendritic spine segmentation

    Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

    Get PDF
    This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy

    Combining nonparametric spatial context priors with nonparametric shape priors for dendritic spine segmentation in 2-photon microscopy images

    Full text link
    Data driven segmentation is an important initial step of shape prior-based segmentation methods since it is assumed that the data term brings a curve to a plausible level so that shape and data terms can then work together to produce better segmentations. When purely data driven segmentation produces poor results, the final segmentation is generally affected adversely. One challenge faced by many existing data terms is due to the fact that they consider only pixel intensities to decide whether to assign a pixel to the foreground or to the background region. When the distributions of the foreground and background pixel intensities have significant overlap, such data terms become ineffective, as they produce uncertain results for many pixels in a test image. In such cases, using prior information about the spatial context of the object to be segmented together with the data term can bring a curve to a plausible stage, which would then serve as a good initial point to launch shape-based segmentation. In this paper, we propose a new segmentation approach that combines nonparametric context priors with a learned-intensity-based data term and nonparametric shape priors. We perform experiments for dendritic spine segmentation in both 2D and 3D 2-photon microscopy images. The experimental results demonstrate that using spatial context priors leads to significant improvements.Comment: IEEE International Symposium on Biomedical Imagin

    Multi-object segmentation using coupled nonparametric shape and relative pose priors

    Get PDF
    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes

    Automatic dendritic spine detection using multiscale dot enhancement filters and sift features

    Get PDF
    Statistical characterization of morphological changes of dendritic spines is becoming of crucial interest in the field of neurobiology. Automatic detection and segmentation of dendritic spines promises significant reductions on the time spent by the scientists and reduces the subjectivity concerns. In this paper, we present two approaches for automated detection of dendritic spines in 2-photon laser scanning microscopy (2pLSM) images. The first method combines the idea of dot enhancement filters with information from the dendritic skeleton. The second method learns an SVM classifier by utilizing some pre-labeled SIFT feature descriptors and uses the classifier to detect dendritic spines in new images. For the segmentation of detected spines, we employ a watershed-variational segmentation algorithm. We evaluate the proposed approaches by comparing with manual segmentations of domain experts and the results of a noncommercial software, NeuronIQ. Our methods produce promising detection rate with high segmentation accuracy thus can serve as a useful tool for spine analysis
    corecore